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Abstract—This paper investigates beamforming schemes de-
signed to minimize the symbol error probability (SEP) for
an authorized user while guaranteeing that the likelihood of
an eavesdropper correctly recovering symbols remains below
a predefined threshold. Unlike previous works that focus on
maximizing secrecy capacity, our work is centered around finding
an optimal beamforming vector for binary antipodal signal
detection in multiple-input multiple-output (MIMO) Gaussian
wiretap channels. Finding the optimal beamforming vector in
this setting is challenging. Computationally efficient algorithms
such as convex techniques cannot be applied to find the op-
timal solution. To that end, our proposed algorithm relies on
Karush-Kuhn-Tucker (KKT) conditions and a generalized eigen-
decomposition method to find the exact solution. In addition,
we also develop an approximate, practical algorithm to find a
good beamforming matrix when using M-ary detection schemes.
Numerical results are presented to assess the performance of the
proposed methods across various scenarios.

Keywords—Physical layer security, MIMO Gaussian wiretap
channel, antipodal/M-ary beamforming, KKT conditions, gener-
alized eigen-decomposition, semidefinite relaxation, and projected
gradient descent.

I. INTRODUCTION

The security of wireless communication has been a promi-
nent concern. A passive eavesdropper located within the cover-
age area of a wireless transmission can covertly acquire infor-
mation about the transmitted signal, eliminating the possibility
of being detected. Although encryption plays a crucial role in
preserving data confidentiality, its implementation comes with
substantial computational costs and challenges in the secure
distribution and management of encryption keys. Despite these
measures, a compelling need remains to enhance transmission
security further and reduce the risk of signal interception [2].
To that end, recent advancements in physical layer security,
such as beamforming and artificial noise injection, have been
proposed as effective strategies for enhancing wireless security
[3]], [4]. These approaches leverage the information-theoretic
secrecy properties of physical communication channels, ini-
tially pioneered by Wyner in the wiretap channel [5]. In this
context, the transmitter (Alice) wants to transmit confidential
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information to the authorized receiver (Bob) while protecting
it from a potential eavesdropper (Eve). Wyner’s work demon-
strates the feasibility of establishing a reliable and secure
communication channel in the presence of eavesdroppers, par-
ticularly when the eavesdropper’s signal-to-noise ratio (SNR)
is lower than that of the legitimate receiver. Later research
extended this result to other types of channels besides the
wiretap channel, such as non-degraded discrete memoryless
broadcast channels [6], and also applied it to the standard
Gaussian channel [7]].

As high-capacity multiple-input-multiple-output (MIMO)
communication systems have evolved, numerous studies have
effectively characterized the secrecy capacity of such systems
[8I-[L1]]. Secrecy capacity is the maximum transmission rate at
which the eavesdropper cannot decipher any information [12].
In this paper, instead of secrecy capacity, the beamforming
schemes are designed to minimize the symbol error probability
(SEP) for an authorized user while guaranteeing that the
likelihood of an eavesdropper correctly recovering symbols
remains below a predefined threshold. Specifically, this paper
is focused on finding an optimal beamforming vector for
binary antipodal signal detection in multiple-input multiple-
output (MIMO) Gaussian wiretap channels. Finding the opti-
mal beamforming vector in this setting is challenging. Com-
putationally efficient algorithms such as convex techniques
cannot be applied to find the optimal solution. To that end,
our proposed algorithm relies on Karush—Kuhn—Tucker (KKT)
conditions and a generalized eigen-decomposition method to
find the exact solution. In addition, we also develop an approx-
imate, practical algorithm to find a good beamforming matrix
when using M-ary detection schemes. Numerical results are
presented to assess the performance of the proposed methods
across various scenarios.

Paper Outline: This paper is structured as follows. We begin
by reviewing related work in Section [[I} Section [lII|introduces
the symbol error probability-based MIMO beamforming and
MIMO Gaussian wiretap channel. We consider the SEP-
based binary antipodal beamforming in Section In Section
we explore the SEP-based M-ary beamforming. Section
presents numerical results and discussions. Finally, we
conclude the paper in Section

II. RELATED WORK

Several efforts have been made to find closed-form solutions
for the secrecy capacity of the MIMO Gaussian wiretap



channel, as discussed in [13]], [14]]. In this context, the secrecy
capacity involves optimizing the transmit covariance matrix of
the input signal, which is a non-convex optimization problem.
This fundamental problem in studying physical layer security
in MIMO systems has prompted extensive research over the
past decade, utilizing various approaches [15]. While the
optimality of Gaussian signaling and a general formula of the
secrecy capacity is well established, closed-form solutions for
the optimal transmit covariance matrix exist only for specific
cases, leaving the general case unresolved [16], [[17].

Various iterative and sub-optimal solutions have been pro-
posed to address the secrecy capacity, primarily focusing
on determining the transmit covariance matrix. For instance,
alternating optimization and convex reformulation algorithms
have been introduced in [18]—[22]]. These methods transform
the non-convex problem into a convex one and iteratively solve
it using convex optimization. However, the complexity of these
methods is high, and their solutions can be unstable in specific
antenna configurations.

In addition, generalized singular value decomposition
(GSVD)-based precoding, which decomposes the transmit
channel into multiple parallel subchannels, offers a closed-
form solution [23]], [24]. Nevertheless, in certain antenna
settings, such as when the desired receiver has only one
antenna, this closed-form solution deviates significantly from
the achievable capacity. A new covariance matrix parameter-
ization was proposed for transmitters with two antennas, and
its optimal closed-form solution was derived in [25]]. This
approach was generalized to arbitrary numbers of antennas
in [26]. However, the iterative and computationally intensive
nature of the parameter determination process, particularly
for systems with many transmit antennas, still needs to be
improved.

Recently, deep learning (DL)-based precoding techniques
have been proposed for secure communication over MIMO
wiretap channels [27]]-[30]. While achieving near-capacity se-
cure rates efficiently, DL-based precoding requires substantial
training time and computational resources, and its performance
is sensitive to the quality and quantity of training data.

While secrecy capacity is a commonly used metric, its
practical implementation and measurement present challenges
in real-world scenarios where practical non-Gaussian codes are
utilized. To tackle this, linear beamforming techniques have
been proposed to exploit the transmit diversity by weighting
the information stream [31]-[33]]. Mukherjee et al. [34] ex-
plore SINR-based beamforming for security in MIMO Gaus-
sian wiretap channels, focusing on designing beamforming
schemes for single-data-stream transmission, with the SINR
at the legitimate receiver serving as a quality of service (QoS)
metric. As a result, robust algorithms have been developed to
minimize the authorized receiver’s required transmit power to
attain the desired QoS, even when channel state information
errors are present.

Our work introduces optimization frameworks that provide
practical solutions for enhancing wireless security in the
MIMO Gaussian wiretap channel. By focusing on optimizing

the symbol error rate rather than the signal-to-interference-
plus-noise ratio, we aim to design efficient algorithms that
minimize the symbol error probability for legitimate users
while ensuring that the probability of an eavesdropper cor-
rectly recovering symbols remains below a predetermined
threshold. To the best of our knowledge, this approach has not
been explored in the context of the MIMO Gaussian wiretap
channel.

Paper Notation: RM is the set of M-dimensional real
vectors. RM*N s the set of M x N real matrices. CM is
the set of M-dimensional complex vectors. CM*V is the set
of M x N complex matrices. Bold lower and upper case letters
express vectors and matrices, respectively. Non-bold letters
denote scalars. The operators (.)7 and (.) indicate transpose
and complex conjugate transpose, respectively. vec(.) is the
vectorization operator. Tr(.) is the trace operator. |.| is the
determinant operator. ||.||, and ||.|| are the Euclidean norm
and Frobenius norm, respectively. $[.] and SJ.] are the real
and imaginary operators, respectively. X > 0 means that X is
symmetric positive semidefintie.

III. MIMO BEAMFORMING IN GAUSSIAN WIRETAP
CHANNEL

In this section, we characterize symbol error probability-

based MIMO beamforming for both binary and M-ary signal
detection and present the MIMO Gaussian wiretap channel.

A. Symbol Error Probability

Consider a MIMO communication system with N transmit
antennas and K receive antennas. The MIMO received signal
y can be expressed as:

y = HWs + n, (D
where H € CE*¥ is channel matrix between transmitter and
receiver as

h;

N= e 2
hg

H = [hijli=1,.. Kkj=1,...

W € CN*L is the beamforming matrix. L is the number
of information symbols and L does not exceed min{N, K'}.
s = [s1,...,s1]7 is the information intended for the receiver,
n € CK ~ CN(0, NoI) is the complex Gaussian noise. For
analysis, we assume H is known, i.e., the full channel state
information is available at both the transmitter and receiver
side [35]-[37].

Binary Signal Detection. In this section, binary signals
are sent, i.e., s € {sg,s1}, where sg = [ag,, ..., T is an
arbitrary complex L-dimensional vector.

We assume the prior probabilities of the two signals s and
s1 to be equal. Therefore, the error probabilities are the same
whether the symbol vector sy or s; was transmitted and can
be derived as [38]]

PeBinary _ é Sl|S = SO P(é = So|S = Sl)) 3)
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where § is the detected signal of s and Q(x) =
\/% = e~z dt is the Q-function.

M-ary Signal Detection. We consider the set of complex
vector s € {si,...,spr}, where each s; = [a;1, ..., a;z]T rep-
resents an arbitrary L-dimensional vector and ¢ € {1,..., M}
indexes the vectors in the set.

According to the union bound in probability theory, the
probability that at least one of a countable or finite set of events
occurs is less than or equal to the sum of the probabilities of
the individual events [39], [40]. Therefore,

P (U Bi> <> BBy, 5)

Following the above formula, let A;; denote the event that
I s—s; lI<|| §—s; || ¥i # j and 4,5 € {1,...,M}. The
error probability of transmitting the symbol vector s; is then
expressed as

M M
P(s # sils = s;) = P( U Ajj) < Z P(Ai;), (6)
J=1,j#i J=1,7#i

2¢/No/2

where P(4;;) = Q (|HW(SSJ)|2)

Therefore,

M
P(s #sils=s;) < Z Q

J=1,5#i

(n HW (s: —s;) ||2> o
2/ No/2

In summary, the union bound for symbol error probability
is formulated as follows:

M
pMmev = NP(s #sis =), 8)
i=1
M
= Zp(é#SHS:Si)P(S:Si), )
i=1
M M
1 HW(s; —s;) |2
B > Q<| Vs )| )
i=1 j=1,j7i o/
(10)
where P(s = s;) = 4; is the probability that the symbol

vector s; is transmitted.

B. MIMO Gaussian Wiretap Channel

We consider a MIMO wiretap channel described in Figure
[ The number of antennas at the transmitter (Alice), the
legitimate receiver (Bob), and the eavesdropper (Eve) are
N, Kp, and Kpg, respectively. We call the channel between
Alice and Bob the main channel (Hp € CK¥5*N) while the
channel between Alice and Eve is the eavesdropper channel
(Hg € CK=xN) The scenario is that Alice sends her message
to Bob while Eve overhears the information conveyed from
Alice to Bob without interfering with the main channel [5],
[14], [24].

Transmitter Receiver
(Alice) . \ . (Bob)
. \ :
\
\
\
\
N
\
N
1 Eavesdropper

. (Eve)

Fig. 1: MIMO Gaussian wiretap channel.

Following the system model in Equation (IJ), the received
signals at Bob and Eve are expressed as follows

yB = HpWs +np,
ye=HgWs+ng,

(1)
12)

where ng ~ CN(0,NgI) and ng ~ CN(0,NgI) are
the noise for the channels of Bob and Eve, respectively.
Moreover, the noise is independent of channel realization. The
input signal is subjected to a power constraint P such that
Tr(WWH) < P [41], [42].

IV. SEP-BASED BINARY ANTIPODAL BEAMFORMING

A. Problem Formulation

In this work, we focus on enhancing reliability and signal-
to-noise ratio rather than maximizing the bit rate. Conse-
quently, we investigate a special case of binary antipodal
signals, where the information symbols are a or —a with
a € C. The binary antipodal signals can be expressed as
s = wa or s = w(—a), where w € CV is the beamforming
vector. Thus, this section is dedicated to analyzing a single
data stream using beamforming.

Based on (B), the error probabilities of Bob and Eve are
expressed as follows:

o (1Hswals)
p oI

oo (I Hewals)
£ o]

13)

(14)

We concentrate on cases where Alice transmits a single
data stream to Bob. Our goal is to minimize Bob’s error
probability while ensuring that Eve’s error probability exceeds
a predetermined threshold, all while meeting the power con-



straint. Consequently, we formulate the following optimization

problem:
min @ [ 1Hzwal: (15a)
w Ng/2
st o Hewala) o 5 (15b)
Ng /2
[wll < P, (15¢)

where Hp € CKXN Hp € CK=XN w e CN, a € C,
D €10,0.5], and P > 0 is the transmitted signal power.

The concept of a secrecy codebook plays a crucial role
in designing secure communication strategies. In essence,
beamforming techniques act as a practical application of
this concept, where secret messages are mapped to specific
beamformers with designated transmit powers to ensure secure
transmission.

W :
Let w = %, the problem can be rewritten as

2P
. 2P
min Q (\/ Ny | Hpwa ||2>
2P
st Q (\/ | Hpwa ||2> >D,  (16b)
Ng

(16¢)

(16a)

— 112
||WH2 S 1a

Due to the Q-function being a monotonically decreasing
function, an equivalent problem of (I6) is:

max || Hpw |3 (17a)
A'%
SN TPy )—1
st || Hpw |§<< Ne/ (2|Z|)Q (D)>, (17b)
w3 <1, (17¢)

The objective of the problem is a convex function, where
the feasible space of this problem is compact and convex.
Therefore, an optimal solution must lie at extreme points [43]],
[44]. Finding these extreme points is challenging, so KKT
conditions are used to develop an efficient algorithm.

B. KKT Conditions
The Lagrangian of the objective function is shown in

Equation (21). The gradient of the Lagrangian can be derived
as follows

Ve Ll(W, A1, \2) =20\ BEHE —-HEHR)w +2\ow. (22)

Therefore, the KKT conditions of the problem are:

2
VNe/2P)Q~Y(D
Hm‘v*ll%—( E/(| )@ ( )> <0, (23a)
a
[w |3 —1<0, (23b)
AL, A3 >0, (23¢)
2

VNe/2PYQ~Y(D

A ||HEv-v*%—( 2/ |’Q ( )> —0, @30)
a

A5 (w3 = 1) =0, (23e)
(NHIHE - HEHp)w* + \3w* = 0. (23f)

An optimal solution must satisfy the KKT conditions. There
are 4 cases corresponding to the possibly optimal values of Aj
and 3.

e Case 1: For A\ =0 and A5 =0,

FLw 3 - ( VA <2P>Q1<D>)2 <o,

(24a)
|al
W)z -1 <0, (24b)
(HEHR)w* = 0. (24c)
e Case 2: For A\ =0 and A5 > 0,
2
Np/(2P)Q~(D
[Hew*[|3 - (WQ ( )> <0, (252
w3 —1=0, (25b)
HEHpw" = \sw™. (25¢)
e Case 3: For A} >0 and A5 =0,
2
Ne/(2P)Q~Y(D
HLew7(13 - (JTM)Q ( )> =0, (26)
W[5 =1 <0, (26b)
HIHpw* = \{HEHpw™. (26¢)
e Case 4: For A7 > 0 and A3 > 0,
2
Np/(2P)Q~ (D
[w*|5—1=0, (27b)
(HEHp — NJHEHR)W™ = \jw. (27¢)

The upper bound of )] in Case 4. From (27c), we have:
(HEHp — N HZHg)w* = A\jw™,

where A7, A5 > 0.

For Ao > 0 to be true, the matrix HgHB — /\THIEIHE
must be positive definite. This requires all eigenvalues of this
matrix to be positive. The positive definiteness condition can
be expressed as:

HEHp — N HEHE = 0, (28)



L(W, A1, A2)

I Hpw 2 A | Hew 2 - (V Ne/(@P)Q” (D)> a(w]2 - 1),

lal
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I 3 A | w3 13— — (V Setelied AP ))27 19

= —wTHEHw + MW HEHZw + A |[W]2 — X2 — A ( v NE/(2|§|)Q_1(D>>2, (20)
W OHIHE — HEHE)W + Ao [W]2 — A2 — Al ( v NE/<2P)Q1(D)>2. @1
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O Optimal
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(a) Setup 1

(b) Setup 2

(c) Setup 3

Fig. 2: Illustration of the optimal case of (a) setup 1, (b) setup 2, and setup 3 in R2.

Consider any nonzero vector u, we have:

! HEHE - N HEHR)u > 0, (29)
W HIHpu - \ju"HIHEu > 0, (30)
A< Ei;ﬂgﬁ;‘i 31)

From the Rayleigh-Ritz theorem, it holds that
Amin(HEHB)u < u"HEHpu < Ao (HEHB)u, (32)
Amin(HEHEp)u < u"HEHpu < \pox(HEHER)u,  (33)

where Apin(X) and Apax (X) denote the minimum and maxi-
mum eigenvalues of X, respectively.
Hence,

)\max (HgHB)

A < ———F—=,
! )\mm(HgHE)

(34)

Therefore, the range of A} is expressed as follows:

)\max (Hg HB)

0< \] < ———2—=2,
T A\ (HEHE)

C. SEP-Antipodal Beamforming Algorithm

The SEP-antipodal beamforming algorithm, detailed in Al-
gorithm (1} iteratively explores Cases 2, 3, and 4 to determine
the optimal beamforming vector, denoted as w*. This algo-
rithm aims to minimize the symbol error probability for a
legitimate user, with a focus on solutions located at the extreme
points of the feasible region. Case 1 is excluded, as it yields
solutions within the interior of the constraint set, which are
suboptimal for this objective.

In Cases 2 and 3, the optimal beamforming vectors can be
found efficiently by solving generalized eigenvalue problems.
Specifically:

e Case 2 finds the eigenvector set [E, that satisfies
HgHBW = Xow with Ay > 0. If an eigenvector wy
from this set minimizes the objective function and satis-
fies the predefined constraints, it computes the probability
P,

o Case 3 involves the generalized eigenvalue equation
HgHBW = AngHEW. Here, A\; > 0, and if an eigen-
vector w3 minimizes the objective function and satisfies

the predefined constraints, PSB; is computed accordingly.

Case 4 requires an exhaustive search over A\; within the

. Amax (HEH
interval (0, WGz s EH g - ;)

A1 value, the eigenvector set [, that satisfies (HgHB —
AngHE)vV = Mow is determined with Ao > 0. If a

) with a resolution of e. For each



Algorithm 1 SEP-Antipodal Beamforming.

Input: HB, HE, NB, NE, D, P, a
QOutput: w*
1: Initialization: Determine the optimal w*
Cases 2, 3, and 4.
Case 2:
2: Find the eigenvector set [E; such that Hg Hpw = \aw;
if Ay > 0 and Wy € E; minimizes and satisfies

5. @) then

considering

[95]

4:  Compute P =Q (\/QP/NB || Hewaa ||2 )
5: else
6: Set PB +o00;
7. end if
Case 3:

8: Find the generalized eigenvector set [Es such that
HgHBW = AngHEW,

9: if A\; > 0 and w3 € E3; minimizes and satisfies
(264). then

10 Compute PE = Q («/2P/NB | Hpwsa ||2);

11: else

122 Set P

13: end if
Case 4:

14: Perform an exhaustive sg;qrch with resolution € over all

max E

15: for each value of \; do

16:  Find the eigenvector set E; such that (Hg Hp —
AngHE)W = )\2\7V;

17 if Ay > 0 and w, € E, minimizes and satisfies

= +00;

(274), @27 then
18: Compute =Q <\/2P/NB | Hpwaa |2 )
19:  else
20: Set PP = to00;
21:  end if
22: end for
23: Select w* = w;+ where * = min; Pe]f =
min; (P2, P2, PB) and w; € {W3, W3, W4 };

feasible eigenvector wy satisfies the predefined constraints and

minimizes the objective function, Pf: is computed.

Finally, the algorithm selects w* as the eigenvector cor-
responding to the minimum error probability among the
computed probabilities P2, PZ, and P2, ensuring that w*

optimally minimizes the error probability across all cases
considered.

Time complexity. In terms of complexity, our proposed
algorithm involves finding all eigenvalues for a dense N x N
matrix, which is of O(N?). Additionally, in case 4, we need
to search through A;, adding to the complexity. Therefore,
the overall complexity of our algorithm can be expressed as
O(V N3), where V represents the size of the search space.

D. Case Analysis

We present the analytical results based on different cases
in Section To simplify the analysis, the real-valued
deterministic channel matrices are used. Figure 2 shows the
objective function contours and constraint boundaries of three
different setups. Note that in all three figures, the symmetry
of the quadratic objective function determines two symmetric
optimal points. Also, all the optimal points are the extreme
points as predicted for an optimization problem with a concave
objective the feasible space is compact and convex set.

Setup 1. We consider the system parameters as Hp =
0.21 0.011 0.01 0.02
[0.09 0.3 } Hs = [0.017 0.01} s

W, Ng = Ng =001 W, N=Kg=Kg=M=2,a¢
{—1,1}. For case 2, Pg = 0.0035, Peb; = 0.4427 (i.e., the
error probability of Eve), wo = [70.8784 0.4779]T, and
Ao = 0.0363. For case 3, there exists no ws that satisfies the
constraint 1i For case 4, P(,E = 2.0542 x 1075, P(ff =
0.346, w4 = [0.475 0.88]", A, = 1.5, and Ay = 0.0361.
Overall, case 4 is selected and presented in Figure Despite
similar channel matrix directions for Bob and Eve in Figure
[2a] Eve’s error probability worsens due to her channel’s high
attenuation coefficient. Case 4 is rare in practice as optimal
points must be among extreme points generated by specific
constraints.

Setup 2. The same setting parameters as the setup

0.21 0.011
0.09 0.3 } He =

], and D = 0.2. For case 2, Pfj = 2.0541 x

1 are considered, except Hp = [

—0.01 0.02
[ 0.01 0.01
1076, Pf; = 0.3960, wo = [0.4779 O.8784}T, and Ay =
0.1061. For case 3 and case 4, there exists no w3 and w4 that
satisfies the constraint (26a) and (27a)), respectively. Hence, we
choose case 2 and describe in Figure @ In this scenario, Bob
and Eve’s channel matrices are highly orthogonal. Using the
beamforming vector directs the signal mainly to Bob, reducing
Bob’s error probability but increasing Eve’s.

Setup 3. We keep the same setting parameters as the setup

0.21 0.015 0.01 0.071
Loexcept Hp = 1o 12 | HE = {001 0.01} and

= 0.3246. For case 2 and case 3, there exists no wy and w3
that satisfies the constraint (25a) and (26a)), respectively. For
case 4, PP = 2.9105 x 10~* with respect to \; = 1 and Ay =
0.0053. PZ = 0.3246 and wy = [—0.9592 —0.2828]T
Accordingly, case 4 is selected and represented in Figure

E. Alternative Problem Formulation

This section addresses a different problem when designing
the optimal beamforming vector. We aim to maximize Eve’s
error probability while ensuring that Bob’s error probability re-
mains within a predetermined threshold while adhering to the
power constraint. Consequently, we formulate the optimization



problem as follows:

| Hewa |2
| Hpwa )
.t. —_— D 35b
st Q ( N, 2 ) <D, (35b)
[wl < P, (350)

where Hp € CEs*N Hy € CE=XN w e CV, a € C,
D €10,0.5], and P > 0.

Since the Q-function is a strictly decreasing function, we
can derive the equivalent problem as

min Hpw| (36a)
2
VN5/2Q-Y(D
st. |[Hpw|? > (B/MQ()> : (36b)
w3 < P, (36¢)

We observe the fact that,

[Hpwl; = wl/HEHpw =Tr(w/HEHpw), (37)
= Tr(HEHpww!), (38)
Similarly, we have:
|Hgw|> =w/HEHEw = Te(w/HEHEw), (39)
=Tr(HZHgww), (40)
Let A = ww', we obtain the equivalent optimization
problem of (36) as follows:
H}in Tr(HEHEA) (41a)
2
VNp/2Q (D
st. Tr(HEHpA) > <B/|C|2()> ., (41b)
a
Tr(A) < P, (410
A >0, (41d)
rank(A) =1, (41e)

The only non-convex constraint is (41e]). Thus, we drop it
to obtain the following semidefinite relaxation (SDR) version
of (#I) as proposed by Ma et al. [46]:

Ir}in Tr(HEHEA)

_ 2
st. Tr(HEHpA) > (VNB/QQI(D)> ,  (42b)

lal

(42a)

Tr(A) < P,
A0,

(42c)
(42d)

Time complexity. The semidefinite relaxation problem
above can be efficiently addressed using interior-point methods
[47]. Specifically, the convex optimization toolbox CVX [48]
is utilized to solve the Problem (#2) in MATLAB. The
computational complexity of these methods typically does
not exceed O((K + N?)35), although practical observations

often reveal a substantially lower complexity. However, it is
important to note that the optimal solution to may not
be of rank one. As a result, it becomes necessary to derive a
feasible solution w for (36) from the SDR solution A*.

Get w from A*. We employ the randomization method
from [49]]. This involves performing the eigen-decomposition
of A* as A* = UXU¥ and selecting w; such that
w; = UX1/2¢,. Here, the elements of e; are independent
random variables uniformly distributed on the unit circle in
the complex plane, specifically [e;]; = e?%:, where 6 ;
are independent and uniformly distributed in [0,27). This
guarantees that wiw; = Tr(A*) regardless of the specific
realization of e;.

When rank(A*) > 1, it is likely that at least one of the
constraints will be violated. However, a feasible weight vector
can be obtained by scaling w; to satisfy all the constraints.
The randomization procedure is detailed in Algorithm 2] Ad-
ditionally, we repeat the random sampling L times and select
the vector that provides the optimal value for the objective
function.

Algorithm 2 Randomization method [49].

Input: A*, L
1: Calculate eigen-decomposition A* = UXU¥H,;
2: for l=1to L do
3. Generate [e;]; = /% where 6;,; ~ U[0, 27);
4. Construct a feasible point w; = UX!/2¢;;
5
6

: end for
: Determine [* = arg min;—
Output: w = w;«

o [[Hew, §;

.....

V. SEP-BASED M-ARY BEAMFORMING

A. Problem Formulation

This section extends our analysis to M-ary detection
schemes with M distinct transmit signals, addressing high-
bit rate scenarios. Unlike the binary antipodal detection in
Section Me-ary detection enhances spectral efficiency for
more complex communication systems. Consequently, the
union bound on the SEP for both Bob and Eve, derived
from ((10), provides a comprehensive framework for evaluating
beamforming performance in high-bit-rate environments as
follows

M M
TP Q(” HaWis —s,) 2>7 43)

i=1 j=1,j7i 2\/Ng/2
M M
sE_ 1 | HEW(si —s;) |l
PPl oy Q( D2
M 1 T 2/Ng/2



From (8), we can derive the lower bound of the SEP for
M-ary detection as below

M
ZP(é#S’hS = Si)u

PéM'—ary (45)
=1
M
= D _PE#sis=s)P(s=s), (46
1=1
1 M
= M;P(s# sils =s;), (47)
> %Mm_inP(é Lsls=s),  (48)
> min P sils = i), (49)
> P(s =sjls=s;), (50)

min
§,J€{1,er, M} it]
4 ale — a) — IHW (s: —s;)ll,
where P(§ =sjls=s;) =Q NN )
Let P be the lower bound of SEP for Eve in M-ary signal
detection. From (50), we can denote as

PE, = i P(s =sjls =s;), 51

LB Lngl’l.f.l"M} (8=sjls=s;) (51)
HzW(s; —s;

= min IHeW(s i ) ”2 (52)
i,je{l,...7M},i75j 2 NE/2

In this problem, our objective is to minimize Bob’s SEP
bound while ensuring that PF, exceeds a predetermined
threshold, all within the given power constraints. The opti-
mization problem for achieving this secrecy can be formulated
as follows:

M M
1 | HpW (s — s;) |2>
min —Z Z Q( (53a)
w Mi:lj:l,j;éi 2\/Np/2
HgW(s; —s;
s.t. min Q IHEW(si — ), > H,
i.Ge{1,... M} i%j 2,/Ng/2
(53b)
Tr(WWH) < P, (53¢)

where Hgy € CEsxN Hp ¢ CEsxN W ¢ CNXL,
{Sl,...7SM} S (CL, H >0,and P > 0.

To facilitate the analysis, it turns out convenient to transform
the complex-valued problem into an equivalent real-
valued problem using the following definitions:

W= lStw) wew ) .
o S Wi O
=[S W o

w56 <57>

These definitions allow us to reformulate (33) as the fol-
lowing real-valued problem:

1 | HsW (S, —§;) |l2

min
Ay’ i=1 j=1,j#i
HflEvV(gi —5) ’
s.t. z Z H7
4,5€{1,...,M},i#] 24/Ng/2
(58b)
Ti(WW7) < P, (58¢)

where Hp € R2K5X2N H, ¢ R2Eex2N W ¢ R2Nx2L
{517"'7§M} €~R2L-
For given W, we define +* and j* as follows:

HI:IEW(éz —gj)H2

= ar min ,
gi,j€{17~--,1VI}7i#jQ 2/Ng/2

* .k

(A

(59)
Due to the non-convexity of Problem (538)), solving it with
low-complexity methods is challenging, making the optimal
solution difficult to find. To address this, we propose an
approximate solution for the reformulated Problem (60) with
v > 0 as a tuning parameter. Hence, v can be tuned until
Eve’s desired SNR is obtained. This approach simplifies the
optimization process while balancing the minimization of
Bob’s SEP and ensuring the minimization of Eve’s SNR. The
parameter y serves as a trade-off, allowing the solution to meet
practical constraints and performance requirements.

B. SEP-M-ary Beamforming Algorithm

We propose the projected-gradient-descent (PGD)-based
algorithm to solve the Problem (60). PGD algorithm is a first-
order optimization technique designed to solve constrained
optimization problems. The method involves projecting the
gradient of the objective function onto the constraint set and
subsequently taking a step in the direction of this projected
gradient [47].

Given W at a specific step, we can determine i*, j* =
argming e, M}z @ wg Therefore, the
objective function of Problem (60) is defined as Equation (63)),
and its gradient is derived in Equation (64). The PGD method
is outlined as follows:

WD Z pro; [T (k)T gp}(W(’“) —aVg f(WH) 7))’
(65)
In PGD, the goal is to minimize a function while ensuring
that the iterates remain within a certain feasible set (i.e., a set
that satisfies certain constraints).
Gradient Step. Taking a step in the direction of the
gradient.

G =W —aVy f(WH ), (66)

where « denotes the step size taken in the direction of the
negative gradient.
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| HpW (5 —§;) 2
mln Q — min , 60a)
;] ;#z ( 2\/NB/2 ’yi,jE{lw--yM}J#jQ 2\/NE/2 (
st. Tr(WWT) < P, (60b)
M M = <Ers s SR .
F(W,y) = 1 S Q | HBW(Sz' —5j) [l2 0 [ HEW(Si* —5;+) 2 61)
Mi:lj Lj##i Np/2 Ng/2
M
1 I HBW Sz —§) 13 | HpW (8- —5;-) |I3
I \/ : R (62)
M i=1 j=1,5#1 2Ng
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M= j=1,j#i 2Np 2Ng
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Vwf(W,7) = _72 Z —c ' iNp . . (8i SJ) sHpW(s; Sj)
W Mo 4=, Vo 2\/(éi—éj)TvaﬁgﬁBw@—éj)
I=5d 2Np
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1 M 5,5 ) TWTALARW (@, -5, 07 H . WA
B I L HEH W (S - §)6 - §)"
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Projection Step. Project the gradient descent update onto ~ where
the feasible set (i.e., Tr(W®HF) (WF)T) < P). This step .
ensures that the iterates remain feasible. ) arg Wiy, & = Wl a1
g =
wk+) PrOJ{T (W (W) T)< P} (Q), (67) S.t. HWprojH2 <P,
: Wi
arg ming, HG Wi Arg Millwy, || f5 ~ 75
_ - F = (72)
= (68)
.t. W |l <
s.t. (WPrO]WProJ) < Pv st H 2 L
arg miny, HG — Wi P g it H%HQ =
= (69) = (73)
Vo 8 -
[W, < vP. VPR it [, >
Let g = vec(G) and wpyj = vec(VVij). We can then The method stops if
reformulate as the following problem: FOWHRHD ) F(WH) ) < e, (74)

WEFD — yec(g*), (70)

where € is a very small real number, e.g., 107°.

)



Algorithm 3 SEP-M-ary Beamforming.

Input: WO, P, a, ~
Output: W+
1: Initialization: Set £ = 0
2: repeat

- | w3,
3 (i%,J7) = argming jeq1,. myizj @ ( 2y/Ng /2 —
4 q — W(k) _ avvvf(w'(k)7 fy)’ (Gradient)
5. WD = Proj (o0 (wiyry< p) (G) 5
argminy, |G — W HF ;
S.t. HWProj S ﬁ?
~ F
WD) = vec—1(g*); (Projection)
N T
where g* =
8 &
VPR ||, > 1
nd 48~ vec(G), i
Wproj = VCC(WProj)7
6: k=k+1,

7: until a stopping criterion is satisfied, i.e., Eq.

The PGD-based method is outlined in Algorithm |3} This
algorithm is motivated by its simplicity and memory efficiency,
leveraging the benefits of gradient descent. Moreover, the
projection onto has a closed-form solution as shown in
(70), allowing for efficient processing of the entire procedure.

Time Complexity. The time complexity of Algorithm [3]
is evaluated based on its iterative structure. Each iteration
involves three primary steps. Step 3 has a complexity of
O(M? x K x N), resulting from the matrix-vector product
computations and the exhaustive search over all possible val-
ues of 7 and j. Step 4 has a complexity of O(M?x K x N x L),
which pertains to the gradient calculation of the objective
function in Problem (60) and goes through all possible values
of ¢ and j, where L < min{N, K'}. Step 5, which involves
the projection procedures, has a complexity of O(N x L).
Consequently, the overall complexity for a single iteration is
O(M? x K x N x L). Taking into account the total number of
iterations required for the algorithm to converge, the overall
complexity is O(number of iterations x M? x K x N x L).
This thorough complexity analysis underscores the computa-
tional feasibility and efficiency of the proposed algorithm for
managing large-scale MIMO systems.

VI. NUMERICAL RESULTS

This section presents numerical examples demonstrating
the SEP of Gaussian MIMO wiretap channels employing the
proposed beamforming algorithms. The signal-to-noise ratio is
measured as SNR = P/Np.
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Fig. 3: SEP comparison of Bob and Eve versus SNR in
deterministic real orthogonal direction channels with N =

Kp=Kg=2.
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Fig. 4: SEP comparison of Bob and Eve versus SNR in deter-
ministic real Gaussian channels with N = Kgp = Kg = 2.

A. Binary Antipodal Beamforming

In Figure 3] we analyze Bob and Eve’s SEP comparison
versus SNR, where N = Kp = Kg = L = 2,a € {-1,1},
D =0.2, and Ng = Ng = 0.1 W. Here, we consider Hg =

021 021] o [0.21 —021
021 021 ™ PE T 021 021

orthogonal direction channels, i.e., HgHy = 0. Given that
the directions of Hp and Hpg are orthogonal, the optimal
beamforming strategy directs the entire information signal to
Bob. Consequently, while Eve’s error probability P” remains
zero, Bob’s SEP decreases significantly with increasing SNR.

as deterministic

Figure [ illustrates a comparison of SEP for Bob and
Eve as a function of SNR, using the same configuration as
in Figure [3] Here, we set D = 0.3, Ng = Np = 0.01

0.0262  0.0049
and Hg =

W, and consider Hg = _0.1598 —0.2414
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Fig. 5: SEP versus SNR for Bob and Eve between (i) SEP-
Antipodal and (ii) SINR-BF schemes in deterministic real
Gaussian channels with N = K = K = 2.

0.0498 0.0194 deterministi 1 G . h
_0.0446 —0.0758| @ deterministic real Gaussian chan-
nels. A notable trend observed for both Bob and Eve is that

their performance improves considerably with increasing SNR.
Nevertheless, Bob exhibits a lower symbol error probability
compared to Eve. This difference arises from the beamforming
vector being optimized to direct the information signal towards
Bob. It should be noted that constraints and only
become active at the brown point. Furthermore, as the SNR
increases, none of the scenarios under consideration yield a
feasible solution.

In Figure [5] we compare the performance of two beamform-
ing schemes: (i) SEP-based binary antipodal beamforming
(SEP-Antipodal) scheme, implemented using Algorithm [I]
and (ii) the signal-to-interference-plus-noise ratio-based beam-
forming (SINR-BF) scheme, implemented using Algorithm
in [34]]. The parameter settings are consistent with those
used in Figure ] Our scheme significantly outperforms the
one proposed in [34] for both Bob and Eve. For instance,
to achieve PP = 0.25, SEP-Antipodal requires an SNR
of 4 dB, whereas SINR-BF needs an SNR of 7 dB. This
illustrates the effectiveness of our approach. Furthermore,
the performance gap between SEP-Antipodal and SINR-BF
widens considerably with increasing SNR.

Coee = giag% Cp - CEg, (75)
= gagglog I+ HpQ.HJ| —log I+ HzQHE|.
. (76)

where Q, = E[wa(wa)?] = a?wwl.

The comparison of secrecy capacity versus SNR between
the SEP-Antipodal and SINR-BF schemes is shown in Figure
[6l Secrecy capacity (Csc.) is determined by Equation (76).
It is observed that the secrecy capacity achieved with SEP-
Antipodal surpasses that of SINR-BF, especially in high SNR

Algorithm 4 SINR-Beamforming [34].

Input: HB, HE, N, KB, KE

QOutput: w*
1: if Kg < N then
2:  Compute generalized eigenvector w corresponding
to the largest generalized eigenvalue Ap.x, solving
HgHBW = /\mangHEW;

else if Krp > N then
Compute generalized eigenvector w corresponding
to the smallest generalized eigenvalue \.,, solving
HgHEW = AmianHBW;

end if

6: Scale the vector w to obtain w* such that ||w*||§ <P;
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Fig. 6: Secrecy rate versus SNR between (i) SEP-BF and
(ii) SINR-BF schemes in deterministic real Gaussian channels
with N = Kp = K = 2.

scenarios. However, both approaches have zero secrecy ca-
pacity in the low SNR range. The capacities of Bob (Cp) and
Eve (Cg) corresponding to the SEP-Antipodal case are also
illustrated for further detail. It is evident that C'p significantly
increases with rising SNR, while C'r remains at zero across
the entire SNR range. The configuration is the same as in
Figure [3] except for N = Kp = Kp = 4.

We investigate the SEP of Bob and Eve as the number of
Alice’s antennas, N, increases in Figure[§] using the same sys-
tem parameters as in Figure 4] However, this result is obtained
by averaging over 100 realizations of stochastic real Gaussian
channels where h;; € N(0,0.01). As shown, the performance
of both Bob and Eve improves significantly as N increases
from 2 to 5. In addition, the performance gap between Bob and
Eve increases as IV increases. Hence, increasing the number
of transmit antennas helps improve the reliability and security
of the communication system. Furthermore, the performance
gap between Bob and Eve widens with an increasing N.
Thus, increasing the number of transmit antennas enhances
the reliability and security of the communication system.

The impact of increasing the number of antennas at the
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eavesdropper is also depicted in Figure [7] Eve’s average SEP
decreases as the number of antennas increases. For Kz > 5,
Eve’s performance is notably high, indicating that she can
intercept almost all information from Alice. This phenomenon
occurs because beamforming is no longer effective at degrad-
ing the eavesdropper’s reception in this scenario. Thus, infor-
mation security assurance through physical layer techniques is
not guaranteed in such circumstances.

Figure [9] compares the SEP performance of three schemes:
(i) SEP-Antipodal, (ii) the SDR-based beamforming scheme
(SDR-BF) discussed in Section [[V-E] and (iii) SINR-BF.
Unlike Figure [5] this one considers the same beamforming
vector for each scheme’s SNR point. The results indicate that
the SEP-Antipodal scheme outperforms SINR-BF, while SDR-
BF exhibits slightly better performance than SEP-Antipodal.
However, it is important to note that the SDR-BF scheme
provides only an approximate solution to the beamforming
design problem.

SEP
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— — —Eve, SDR-BF O
0.1 | | —%— Bob, SINR-BF N
—%¥— Eve, SINR-BF
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Fig. 9: SEP versus SNR for Bob and Eve between (i) SEP-
Antipodal, (ii)) SDR-BF, and (iii) SINR-BF schemes in deter-

ministic real Gaussian channels with N = Kg = Kg = 2.
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Fig. 10: Average SER of Bob and Eve versus SNR obtained
through Monte Carlo simulation with N = Kp = Kg = 2.

B. M-ary Beamforming

In this section, we explore M-ary detection with M = 4,
using the following system parameters: s; = [1 +i 1 —i|7,
so=[-1—i 1—i|T,sg=[-1+i 1—-i]T,s4=[-1—i —
1+iT, N=Kp=Kg =L =2, and v = 1. The channel
coefficients are assumed to be deterministic and real. We set
the accuracy parameter € to 10~ and allow a maximum of 300
iterations for solving the problem. Each simulation consists of
100 trials, initialized from different starting points.

The Monte Carlo simulation results in Figure [I0] illustrate
the SEP of Bob and Eve as a function of SNR. As ex-
pected, Bob outperforms Eve across nearly the entire SNR
range, thanks to the optimal beamforming matrix. However,
at sufficiently high SNR levels, the performance of both Bob
and Eve improves significantly. This indicates that physical
layer security is not ensured in a very high SNR regime.
These results, obtained from actual symbol error rates through
Monte Carlo simulation, validate the effectiveness of our upper
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Fig. 12: Average SER for Bob and Eve versus SNR with
different values of N with Kp = K = 2.

bound-based approach in practical scenarios.

Figure [T1] presents the average bounds of SEP, calculated
using Algorithm [3] alongside the average SER obtained from
Monte Carlo simulation. The results indicate that while the
SEP bound is not closely aligned with actual SER values in
the low and medium SNR region, it significantly converges
in the high SNR range, particularly for SN R > 20 dB. This
suggests that our algorithms, based on the upper bound of SEP,
can effectively optimize the beamforming matrix.

In Figure [I2] we analyze the average SER for both Bob
and Eve across different values of N, with Kp = K = 2
set. The results demonstrate a significant improvement in the
performance of both Bob and Eve as the number of transmit
antennas, [V, increases. For instance, at an SNR of 10 dB,
P25 decreases from 0.4 to 0.2 as N increases from 2 to 5.
This improvement underscores the importance of increasing
the number of transmit antennas to enhance the reliability of
the communication system.

The influence of changing N and Kp is explored in

T T T T T T
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- % —Eve,N=K =2
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Fig. 13: Average SER for Bob and Eve versus SNR with
different values of N and K with K = 2.

Figure [I3] with Kp fixed at 2. While Bob’s SER follows
the trend observed in the previous figure, the performance
of Eve remains relatively stable between the scenarios with
N = Kpg =2 and N = Kg = 5. This observation illustrates
the benefit of increasing the number of receive antennas to
enhance the reliability and security of the MIMO Gaussian
wiretap channel.

VII. CONCLUSION

This paper has presented new beamforming schemes for
MIMO Gaussian wiretap channels, designed to minimize the
symbol error probability for authorized users while constrain-
ing the eavesdropper’s ability to recover symbols above a pre-
defined threshold. We have proposed an algorithm to determine
the optimal beamforming vector for binary antipodal signal
detection. Based on Karush-Kuhn-Tucker conditions and the
generalized eigen-decomposition method, the proposed algo-
rithm offers the exact solution to the non-convex optimization
problem. Furthermore, an approximate and practical algorithm
relying on projected gradient descent has been developed
to obtain a good beamforming matrix when using M-ary
detection schemes. Through extensive numerical simulations,
we have demonstrated the efficacy of our approach across
various scenarios.
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